Learning to Play Stackelberg Security Games
نویسندگان
چکیده
As discussed in previous chapters, algorithmic research on Stackelberg Security Games has had a striking real-world impact. But an algorithm that computes an optimal strategy for the defender can only be as good as the game it receives as input, and if that game is an inaccurate model of reality then the output of the algorithm will likewise be flawed. Consequently, researchers have introduced Bayesian frameworks that capture uncertainty using a probability distribution over possible games. Others have assumed that the unknown parameters of the game lie within known intervals. These approaches are discussed in Chapter 17 of this book [17]. In this chapter, we present an alternative, learning-theoretic approach for dealing with uncertainty in Stackelberg security games. In order to paint a cohesive picture, we focus on one type of uncertainty: unknown attacker utilities. Learning will take place in a repeated Stackelberg security game, where the defender gathers information about the attacker purely by observing the attacker’s responses to mixed strategies played by the defender. In more detail, we wish to learn a good strategy for the defender without any initial information about the utility function of the attacker (Section 1); when given a distribution over attacker types (Section 2); and when faced with an unknown sequence of attackers (Section 3). In each section we present, in some generality, the relevant learning-theoretic techniques: optimization with membership queries, Monte Carlo tree search, and no-regret learning, respectively. In Section 4 we briefly discuss additional work at the intersection of machine learning and Stackelberg security games.
منابع مشابه
Machine Learning Techniques for Stackelberg Security Games: a Survey
The present survey aims at presenting the current machine learning techniques employed in security games domains. Specifically, we focused on papers and works developed by the Teamcore of University of Southern California, which deepened different directions in this field. After a brief introduction on Stackelberg Security Games (SSGs) and the poaching setting, the rest of the work presents how...
متن کاملLearning and Approximating the Optimal Strategy to Commit To
Computing optimal Stackelberg strategies in general two-player Bayesian games (not to be confused with Stackelberg strategies in routing games) is a topic that has recently been gaining attention, due to their application in various security and law enforcement scenarios. Earlier results consider the computation of optimal Stackelberg strategies, given that all the payoffs and the prior distrib...
متن کاملMultiagent Q-Learning: Preliminary Study on Dominance between the Nash and Stackelberg Equilibriums
Some game theory approaches to solve multiagent reinforcement learning in self play, i.e. when agents use the same algorithm for choosing action, employ equilibriums, such as the Nash equilibrium, to compute the policies of the agents. These approaches have been applied only on simple examples. In this paper, we present an extended version of Nash Q-Learning using the Stackelberg equilibrium to...
متن کاملAdversarial AI
In recent years AI research has had an increasing role in models and algorithms for security problems. Game theoretic models of security, and Stackelberg security games in particular, have received special attention, in part because these models and associated tools have seen actual deployment in homeland security and sustainability applications. Stackelberg security games have two prototypical...
متن کاملThree Strategies to Success: Learning Adversary Models in Security Games
State-of-the-art applications of Stackelberg security games — including wildlife protection — offer a wealth of data, which can be used to learn the behavior of the adversary. But existing approaches either make strong assumptions about the structure of the data, or gather new data through online algorithms that are likely to play severely suboptimal strategies. We develop a new approach to lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015